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The asymptotic form of the stress-strain state of a three-dimensional elastic body in the neighbourhood 

of a singular point of a special type is investigated. Near such a point the boundary of the body consists 

of four surfaces, namely, two planes forming a dihedral angle and two smooth surfaces tangent to one 

another at a point on the edge of the angle. (Similar singularities are present on the cutting edges of 

some devices.) A procedure for determining the structure of asymptotic solutions is presented. 

1. FORMULATION OF THE PROBLEM 

LET m BE a natural number, let /z, be smooth functions of the angle variable cp E [-a, a], where 
01 E (0, IC], and let h(cp) = h+(q) + h_(cp) > 0 for I cp I< a. Moreover, let Sz be a bounded body in R3 
defined by the relations 

-K(X,*“z) < x3 < H+(x, 9x2) 

in a neighbourhood of the origin 0, where r, cp, z are cylindrical coordinates. In this case we say 
that 0 is a singular point of the “beak tip” type (see Fig. 1). 

The material of the elastic body R will be assumed to be homogeneous and isotropic with 
Lam6 constants h and p. We will also assume that the bases l-” = (X :z = +r’“h,(cp>, r > 0, I cp lc a} 
are free of stresses. On the lateral surfaces Xc, =(x :- Ph_(cp) c 2 < r2”/1+(((p), r > 0, cp = Itol) we 
specify one of the following two conditions: either the displacement vector u is equal to zero 
(the Dirichlet condition), or the components (T,, o,, opr of the stress tensor are equal to zero 
(the Neumann condition). We do not exclude the case when cp in (1.1) varies over the unit 
circle S:, i.e. the two smooth surfaces forming the boundary of the body are tangent at 0 and 
C, are empty sets. 

Next, a formal construction (without rigorous justification) of the asymptotic form of the 
stress-strain state near 0 is given. The methods for studying boundary-value problems in 
narrow domains (see [l-4], etc.) are used. The use of such methods is justified by the fact that 
the intersection of Q and a sphere Si of small radius 6 centred at 0 is a narrow (of width 
O@“‘-‘) and length O(6)) curvilinear zone, the behaviour of the solution near the singularity 
being determined by the geometry of fins, (cf. [5-71). We remark that the same methods 
enable one to study the asymptotic form at infinity of solutions of elastic problems in a layer or 
in a layer sector [8,9]. 
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FIG. 1. 

The asymptotic form of the displacement field u near the tip of the beak involves (as in 
problems with other types of singularities of the boundary) a linear combination of special 
asymptotic solutions u with coefficients that depend on the data of the problem as a whole (on 
the loads and the whole domain a). However, the solutions u themselves are defined only by 
the shape of the beak (formulae (1.1)) and the local properties of the elastic material. In the 
case of a conic point the asymptotic solutions have the simple form 

Ph k!. $ln pwq-“W, q=O,...,tc-1 (1.2) 

where p and o are spherical coordinates, A is a number and 0(O), . . . , cD@-~) are vector-valued 
functions. For the tip of the beak, the structure of the asymptotic solution becomes much more 
complicated and must be studied separately, which is the purpose of the present paper. 

Throughout this paper we will use the method of introducing a small dummy parameter 
E >O. It is clear that the relationships (1.1) are invariant under the inhomogeneous coordinate 
scaling 

x = hlr x2, x3) - cv, r> 

Y = oj,Y2) = E-Y(~*,x2h r = E-*X3, y = (2m)-’ (1.3) 

Since ycl, it is natural to declare c to be a “fast” variable, expand the operators of the 
problem to series in the powers of E’-~, and then use the algorithms from [l-4]. In this way one 
can eliminate the variable z =x,, which varies over a narrow range that vanishes as r + 0, and 
obtain a system of three differential equations for the leading term (u, w) of the asymptotic 
solution u in the angle K = ((x,, x,) : r > 0, I cp I< a). The system is derived and transformed to 
self-adjoint form in Sec. 2. Section 3 is devoted to the case of tangent smooth surfaces, namely, 
we discuss general questions concerned with finding power solutions of a degenerate system 
on K = R* \ 0 (the “total” angle), give explicit formulae in the presence of symmetry h+ = h_, 
and interpret those solutions that increase near 0. In Sec. 4 it is assumed that the lateral 
surface C, is rigidly supported. Correspondingly, the Dirichlet problem is set on the sides of 
the angle K, the procedure for finding power solutions of the boundary-value problem in K 
remaining the same. A new feature in Sec. 4 is the construction of asymptotic corrections 
appearing in u due to the boundary layers near the lateral surface C,. As in [l, 21, the condition 
of exponential decay of the boundary layer makes it possible to derive the boundary conditions 
on X themselves. In the case of a free lateral surface this is done in Sec. 5. 

2. DERIVATION OF A SYSTEM OF LIMITING EQUATIONS 

In terms of the coordinates (1.3), the Lame operator can be written as follows: 
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~(V,)=e-2{LO(aC)+&‘-‘L’(V,al)+&2-~~2(v)) 

L(V,)=~V*.V,+(~+~)V,V,. 

V, =caiax,,a/aX2,afaX3)f. v=(a,,a,Y, ai =a/ayi, a, =a/ay 

LOb3,) = dhgw,2p+ n,a; 
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(2.1) 

W,a,)=cx+boa, i, 0” , I II 
Here L(V) is the two-dimensional Lam6 operator with constants h and p, t denotes trans- 
position, and the scalar product is denoted by a dot (i.e. V,. and V. are the divergence 
operators in R3 and R’). Besides, here and henceforth we shall adopt the following 
convention for writing (3 x3)-matrices: the left upper block has dimensions 2 x 2, while the 
right lower corner contains a scalar. We denote by I?*(&, x, V,) the (3 x 3)-matrix-valued differ- 
ential operator of the boundary conditions on r, (in terms of stresses). The outward unit 
vector normal to f+, has the form 

Thus 

[1+&%?f*(y)121~B*(E,X,V,)= 

=E-~(~o*~a,~+~~-~~l*(Y,v,a5~+~2-2~B”~y,v~~ 

P* (a, ) = + dia;(u,p, 2j.t + was 

(2.2) 

P*(y,v,ac)= - 
H 

O kvH*~a, &I !&’ y) 
P(V~*)’ 0 

E2*(y, V) = 

B”‘(V) = 
R 

We remark that B(j’(V)u are the two-dimensional stress vectors (plane strain). 
The operators (2.1) and (2.2) contain the small parameter for some of the leading deriva- 

tives. As in [l-4], we will seek a formal series for the solution outside conic neighbourhoods of 
X, in the form 

M&y.<)= 5 E%j(y,c), a=l-y 
j=O 

~“(Y~~)=v4w(Yh ~‘(Y,r)=(~(Y)+v’(Y,r),o) 

U2(Y& = (w2(Ym U3(YPC> = w3(Y.c)Ju 

(2.3) 

The function w (the normal displacement) and the vector-valued function u=(u,, u,) (the 
displacements in the tangent plane to the beak) are to be determined. The other unknowns in 
(2.3) can be expressed in terms of u and w. They can be found as follows: the expansions (2.1)- 
(2.3) are substituted into the homogeneous Lame equation and the homogeneous boundary 
conditions on r,, and then the coefficients corresponding to the same powers of E are 
collected. As a result, one obtains a recurrent sequence of ordinary differential equations (in c) 
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in the interval Y(y) = [-H_(y), H+(y)] depending on y = (y,, yJ as on parameters 

Cui = _Llui-l _ L2ui-2 
. w(Y) 

BO*uj = _&Jj-1 _ &fuj-2 
9 C=fH*(y) (2.4) 

Here i=O, I,... and U’ = 0 for i c 0. It is obvious that Eqs (2.4) are satisfied for i = 0. Solving 
(2.4) for i= 1, 2, we find that 

WY, 0 = - mw 
(2.5) 

Problem (2.4) with i = 3 is not always solvable. For the vector V3 in (2.3) to exist it is 
necessary that the components of the (vector-valued) right-hand sides F and G* of Eqs (2.4) 
satisfy the condition 

- 1 ~;;:(y.r)dr+G,+(y)-G,~(y)=O 

for i=1,2. 
Taking (2.4) and (2.5) into account, we can rewrite (2.6) as a system of two equations relating 

II and w 

-Q(Hl: Y. WW + Q(Hz; Y, ~)VwcV) = 0, Y E K (2.7) 

H, = H++H_, H, =j$(H$H:) 

Q=tQ,*Q2); Qj(H:Y,V)u(Y)=a,(H(y)~jl(u;y))+a,{H(y)2j2(U;y)) 

rj~(u;Y)=~(ajUr(y)+a,uj(y))+6j,t2~(~+2~)-’V.u(y), j*kz1v2 

Note that z =ll~~~ II is the stress tensor for the plane stress state. Subject to the condition 
(2.7), the problem under consideration has the solution 

V3(y,C)=(5+2p)-1[gc3(3h+4pjVV*Vw(y)- 

-HC2{(h+2p) V.Vu(y)+2(h+p)VV.u(y))+ 

+CW)-L[QW+ -H_;yS’)u(y)-MQW:+ H';y,V)Vw(y)l cw 

We consider the system (2.4) for i = 4. Now, in general, the (scalar) problem for the third 
component W, of U4 is unsolvable. By virtue of (2.5) and (2.8), condition (2.6) can be trans- 
formed into a new equation connecting 2) and w 

~~IH,(Y)Q(H,:Y,V)~(Y)+~CL(~+CL)~~+~CL)-’H~(Y)VV.VW(Y)+ 

+)/ZH,(y)[-QW+ -H_;ySW(y)+XQUf~ +H%‘)WyN) = 0 

H,=fiW:+H:) (2.9) 

Thus, we have constructed the system of equations (2.7) (2.9) in K, which must be satisfied 
by the leading terms u and w of series (2.1). We shall now remove the small dummy parameter 
by setting E = 1 and x=(y, !J in (1.3). It will be verified below that the terms of the series 
subsequent to U” and U’ are small, because they decrease rapidly as r + 0. 

The resulting system is not formally self-adjoint. However, this deficiency can be easily 
corrected. We multiply (2.7) by X(H+ -H_), apply the operator V., and add the result to (2.9). 
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The original system is transformed into the equivalent self-adjoint system 

-Q(Hl; Y, VW) + Q(Hz: Y, W’W) = 0 

V . I-QWz; Y, VhW + Q(H3; y. VWy)) = 0 

of partial differential equations. We shall write (2.10) and (2.11) in the short form 

(2.10) 

(2.11) 

WY, VW) + Tqy, V)w(y) = 0 

7w7 mt_Y) + P2cy, V)w(y) = 0 (2.12) 

where T” is a (2x2)-matrix, T” is a column, Tzl is a row, and T22 is a scalar differential 
operator. 

3. THE POINT OF CONTACT OF SMOOTH SURFACES 

If K is the punctured plane R2 \O (the total angle), then the same system of equations (2.12) 
defines possible “beginnings” (u, w) of the asymptotic solutions u. The coefficients of the 
differential operators Tjk have strong degeneracy of order ?‘(j+k-l) at 0. Because of this, the 
general results of [lO-121 cannot be applied directly. However, on multiplying (2.10) and (2.11) 
by r-“” and ram, respectively, and making the substitution w H w’= rZmw, the elements Sjk(y, 
V) of the differential operator obtained in this way can be written as follows: 

S1l(y, V) = r-2S11(cp, iI,, d,). S12Cy, V) = r3S*2((p, i&, r &) 
(3.1) 

P(y, V) = r-3S21(cp, il,, d,), Pcy, VI= t--w*((p,a,, r a,) 

The singularities of the coefficients in (3.1) are consistent with the order of the differential 
operators and are admissible in the theory of elliptic problems in domains with conic or corner 
points (see [lO-121, etc.). It follows, in particular, that there is a denumerable system of linearly 
independent power solutions of system (2.12) on RZ \ 0 (similar to (1.2)). These solutions can 
be represented in the form 

MY) = r ‘+‘io +(inr)‘d’-“(rp) 

W(Y) = r A+2-2”~0 -/-(lnr)k0\9ek)((p) (3.2) 

Additional information about system (2.12) is needed to explain how to find the numbers A 
and the sequences G?(O) = (Q(O), a?)), cP(‘) = (&‘), a!)), . . . in (3.2). 

Let U, and 2), be the polar components of u. We will write the matrix-valued operator T in (2.12) in 

terms of the polar coordinates r, (9. To do this, by (2.7) and (2.10), (2.11), we will change to polar 
coordinates in the equilibrium equations (we transform Q), in which H,z(u) and Hjz(w) appear as the 
stress tensors. As a result, system (2.12) takes the form 

(3.3) 

On the unit circle S,’ we consider the following operator pencil h~T(cp, a_+, A) which depends 
polynomially on A 
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T(qd,.A)= I T”;q,$A+l) 

T2’(cp.d,,h+1) T”((p,d,.A+2-2m (3.4) 

It can be verified (see [12, Sec. 3.51) that the functions (3.2) satisfy (3.3) if and only if A is an eigenvalue 
of (3.4) on Si and a(‘), . . . , acq) form a Jordan chain corresponding to this eigenvalue (i.e. 6’) is an 
eigenvector and @D(l), . . . , acq) are the associated vectors). 

Green’s formula 

(T”u’ +T’2wl,y2)K +(T2tut+Tzw1.w2)K =2E(u’,w’;u2,w2) 
(3.5) 

2E(u’,w1;u2,w2)=W(ut,u2;H,)-W(V ~‘.u~;H~)-W(~~,V~~;H~)+W(VW~,V~~;H~) 

W(u1.u2;H)=l 2~ . $ 1 
‘.I= 

(Hrc(~‘).ri(~~))~ -&(Hr,(ul )*‘Fd(U2))K 

holds for arbitrary vector-valued functions (u’, w’) E C,‘(K)‘. We denote by ( , )K the scalar product in 

UK)‘. 
From (3.5) we obtain Green’s formula 

(T(dW’).(U2,W2))K =((U’W1),T(U2,w2))K (3.6) 

We write this equality in terms of the polar coordinates r, (p choosing 

(3.7) 

(U2(yXw2(y))=(x6(r)r M+1Y((P),xS(r)rM+2-2”Y3((P)) 

M=-X-2-2m 

as (u’, w’). Here x8 is the cut-off function in C,“(R) such that x6(r)=1 for 6 <r < 6-l, and X*(r)=0 for 

r>26” or r<6/2. Wehave 

121n61-’ j ((r 2m~2T11(r~,)r’~“~+r4m~3T12(r~,)r2~2m~A~~)~gr1~~~+ 
K 

+(r 
4m-3T21(ra,,rl+A~+r6m-4T22(ra,)r2-2”+”~,)X6r2-2m+~~~~dy= 

=12lnd=~ 

I 

‘; ((T11(1+A)0+T12(2-2m+A)0~~+ 
6 0 

+(T21(1+A)@+T22(2-2m+h)Q3)~~)r-1drd~+o(l)= 

s-1 & 2x 
=121nSl-’ ] 6 -T d ((T11(-A-1-2m)~+T’2(-A-4m)~+b+ 

+(T21(-h-1-2m)~+T22(-A-4m)~$I’3)d~ 

To simplify the notation, we will omit the arguments cp and a,. Passing to the limit as 6 + 0, we obtain 

(T(A)@,‘I’),: =(@,T(-;i-2-2m)Q)$ (3.8) 

It follows that the operator T( q, a,, -x - 2 - 2118) is formally adjoint to T( cp, a,, A). The spectrum of (3.4) 

in the complex plane is therefore symmetric about the straight line [A EC, Reh =-l-m]. Besides, since 
the original operator T is elliptic, the spectrum of the operator pencil consists of a denumerable number 

of normal eigenvalues, all of which (except perhaps a finite number) lie in [A EC : Imh c kRe A), where 
k > 0 [lo, 131. Since the energy E in (3.5) vanishes only for polynomials, no points of the spectrum lie on 
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the above-mentioned straight line (112, Sec. 5.4]), which implies that {A EC : I ReA +l+ m I< S} does not 
contain any eigenvalues. 

The problem of finding all eigenvalues and Jordan chains of the operator pencil (3.4) 
involves solving a non-self-adjoint system of differential equations with variable coefficients, 
which cannot be done explicitly. The six polynomials 

(1.0, O), (0, LO), GY2. Yls 0). (090. 11, (07 03 Yd. co+ 09 Y2) (3.9) 

are the exceptions. They will be denoted by 2’ (i = 1, . . . , 6). Formula (2.3) relates rigid 
displacements with polyno~als. The vector-valued functions (3.9) have the form (3.2), A being 
equal to -1, -1, 0, 2m- 2, 2~2-1, 2m- 1, respectively. By the symmetry of the spectrum, 
-1- 2m, -1- 2m, -2 - 2m, -4m, -1-44 -1-4m are also eigenvalues (repeated numbers 
indicate multiplicity). We will denote the corresponding eigenvectors by Yi (i= 1, . . . , 6). 
Solutions of the form (3.7) with angular parts Vi give rise to the asymptotic solutions U’, 
which cause the energy functional to become infinite. We will give a physical inte~retation of 
such solutions. 

In the special case when N, = H_, the operators T” and T21 vanish and system (3.3) splits 
into a system for u and an equation for w. This simplifies the problem of finding ‘Iv”. For 
example 

It can be verified that 

It follows that the solutions ul, u2 correspond to the longitudinal forces (in the y, and y, 
directions) concentrated at 0, while u4 corresponds to the transverse force (in the z direction). 
Similarly, u3, us, u6 are the concentrated moments. 

Let us discuss the general case. First we will consider system (2.12). Let @‘, . . . , (P’ be 
eigenvectors and let A, be an eigenvalue of T(A), and let there be no associated vectors. The 
n~ber I&, = -2 - 2m- A, is also an eigenvalue and has no associated vectors. Moreover, by 
[11,12] the eigenvectors Vr’, . . . , Vr’ can be chosen in such a way that the biorthogonality and 
normalization conditions 

are satisfied. (We remark that analogous conditions are given in 111, 121 in the case of non- 
trivial Jordan chains.) If X’ =(Y’, w’), . . . , X’ =(uJ, w’) and Y’ =(V1, IV’), . . . , Y’ = (V’, 
W’) are solutions of the form (3.7) constructed from A,, f’, . . . , V’ and M,, W’, . , . , W’, 
respectively, then conditions (3.10) are equivalent to the relations 
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Here x is the cut-off function from Cw(R2) equal to unity near the origin. Finally, integrating 
by parts, we transform (3.11) to the form 

2 28 
e-ll& d .nlI[-H17,(yi)+H2z,i(Vwj)lVit -[-H,~,(Vt)+H2r,(VW’)]~~ + 

,‘1 

+[H~~,~(~‘)-H~Z~(V~~)]~~W’-[H,~,(V~)-H~Z~(VW~)]~~W’ + 

+ai[-Hz~~(u’)+ H,~,,(Vw')]W' - 

-ai[-H,T,(V')+ H,T,(VW’)IW’ 1 lr=s dv = Sj,r (3.12) 

n = (ni, n2) = (cos cp, sin (p) 

Note that the left-hand sides of (3.12) and (3.11) are independent of the choice of x and E > 0, 
respectively. 

We shall now show how (3.12) gives rise to similar normalization conditions for the 
asymptotic solutions X’ and Yk constructed in accordance with (2.3) and (2.5), (2.8) from the 
solutions Xi and Y*. To do this we compute the integral over the domain Z(E) in R defined by 
the intersection with the cylindrical surface (x : I = E) 

1 {O"'(Xj).Y" -o"'(Y')~xj)dS, 
E(E) 
Z(E) = (x:r = &,(P E [0,27C), - H_(x,,xz) < xg < H+(x,,x,)] 

By (2.3), (2.5), and (2.8), it is equal to 

&-i,f, f _I $llr,i(ui) -x,z,j(vwj)](~::‘-x~a;w’)- 
,,= 

(3.13) 

-[‘Fi(VL)-xs~s(VW”)](uii -X3aiWi)+ 

+(~ai[(H+-H_)z,(ui)-K(H+2+HZ)7,i(VWi)J- 

-x$liTa(d) + j$x,2aiTti(Vwi))W” - 

-(j$ai[(H+ -H_)~,i(V’)-~((H: +H_2)‘5b(VWk)j- 

-x+liT,i(Vk) + J$x~airti(VW’))wi) lTzE d*j (3.14) 

apart from terms o(l). We integrate with respect to x, E[-H_, H+], replace the vectors (uj, 
wj) and (V*, W”) by their representations (3.7) in polar coordinates, and add the following 
integral to the result, the integral being equal to zero by (2.7) 

C’ ,,;,I “1 x (H+ - H_)(O;[-HiT,i(u’)+H,r,(Vw’)]W’ - 

After these operations, the integral (3.14) becomes equal to the left-hand side of (3.12). It 
follows that (3.13) tends to the Kronecker delta 6, k as E -_) 0. 

By the aforesaid, if the rigid displacements (3.9) are now chosen as Yk, then one can find a 
system of asymptotic solutions {U’, . . . , U”) such that 

lim ] a”‘(UP).Z9ds, = S,,9, 
E+JH(E) 

p,4= 1,...6 

This equality makes it possible to interpret the displacement fields U’, . . . , U6 as those 
corresponding to concentrated forces and moments. 
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We also remark that the above-mentioned biorthogonality and normalization conditions 
play an important role when the integral formulae for the coefficients are derived from 
the asymptotic expansions of the solutions of problems near the singularities of the boundary 
(see [ll, 121, Chaps 3 and 4; similar formulae in the theory of cracks involve weight functions 
114, w. 

4. THE CASE OF A RIGIDLY SUPPORTED LATERAL SURFACE 

If the Dirichlet conditions are specified on Z*, then the limiting system of equations (2.12) in 
K will be supplemented with the following boundary conditions 

vet) = u2cv) = 0, MYI = a &$+0)=0 for cp=*a (4.1) 

Now, the operator pencil corresponding to problem (2.12), (4.1) consists of the differential 
operator (3.4) on the arc (-a, a) and the boundary conditions at cp=+a. In other words, to 
determine A and Qi in (3.2) it is necessary to solve the eigenvalue problem 

‘I’@, a,, A)@(@ = 0 

@,(*a) =02(fa) = 03(fa) = QD,(*a) = 0 (4.2) 

The corresponding operator pencil retains all the properties of (3.4) (except that the vectors 
(3.9) are no longer solutions of the boundary-value problem (2.12), (4.1)). 

We shall state an assertion on the asymptotic form of the solution of the problem in Q, 
making (for brevity) a number of simplifying assumptions. Suppose that {A EC : 0 < ReA + 
l+ mc 6,) contains one eigenvalue A,, of problem (4.2), which, in addition, is a simple 
eigenvalue. Let a0 be the eigenvector corresponding to A, and let u” be a segment of the 
asymptotic series (2.3) in which 

uO(x)= ; U’(x) 
j=O 

Then the energy solution of the problem on the deformation of R by loads applied away 
from 0 has the asymptotic representation 

u(n)=cou0(x)+o(rs)x(r,r,r2-2m), r+O 

ReAo<6<min(6i,2m-l+ReAo) (4.4) 

In (4.4) co is a constant depending on the data of the problem as a whole (on the loads and the 
geometry of the domain). It is clear why 6, occurs in the bounds for 6: the asymptotic form of 
u contains the asymptotic solution u1 corresponding to the eigenvalue A1 on the straight line 
(A : ReA = -1- m+6,). The inequality appears because (4.3) does not involve any solutions of 
the boundary-layer type. The boundary layer compensates the discrepancies left by the 
solution u” in the boundary conditions on X+, and decays exponentially away from &. We 
shall show how to construct the boundary layer, and what is the result of taking it into account 
in the simplified symmetric situation when 

H+=H_=)$H 

The scheme for finding the boundary layer is the same as in the theory of thin plates. 
Consider one of the lateral surfaces of the beak, say Z_ to be specific. By analogy with (1.3) 
introducing a small dummy parameter E, we define the special coordinates 
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5, = ey-lH(E,,)-'(y, sin a+ y, cosah 62 = WSJ’~ 

e3 = ylcOs a -y&i a (H(r)= H(r cos a,r sin a)) (4.5) 

in the neighbourhood of C_. 
Because of the additional factor &r-l 

direction to Z), 5” = (&, &) 
in the first formula in (4.5) (expansion in the normal 

are now the “fast” variables. They form Cartesian coordinates in 
planes normal to C_. The variable 5, must be regarded as a slow one. This corresponds to a 
new splitting of the Lame operator 

L(VJ = E-*H(@*L~(V~> + . . . (4.6) 

Here V, = (a/X,,, a/&), the dots denote lower-order terms, and Lo is a 3 x3 block-diagonal 
operator. The two-dimensional Lame operator with constants h and p serves as the upper 
block of Lo, while the Laplace operator pV” .V” plays the role of the right lower element. The 
operator B*(x, V,) of the boundary conditions on r, has a similar structure with the leading 
part E-‘H(~J’B~(V~). Finally, in the neighbourhood of C_, R is given by the inequalities 

51 > 0. 1521~ ‘hWS3)-1~O). 53 > 0 (4.7) 

Since, by (4.5), H(y) = H(&) + O(E’-‘) near C_ by taking (4.7) and (4.6) into account, we find 
that the formal passage to E = 0 gives rise to the following limiting problem in II = 15” E R2 : 
5, > 0, I c2 I< X) depending on 5, 

L”WP(S> = F(S), 5’ E I-I (4.8) 
B”(Vo)V(S,. f ‘h,& = C*(Si. 53). 4, > 0 (4.9) 

V(O, 52.53) = G0(S2* 53). I 52 I < ‘h (4.10) 

NO mass forces F are present in the problem for the leading terms of the boundary layer, and 
the lateral surfaces of II are free of any loads, i.e. the homogeneous equality (4.9) means that 
the stresses aj2(V; &, &H vanish for j = 1, 2,3 and 

If H+ = H_ (a symmetric beak) system (2.12) breaks up: Eqs (2.10) and (2.11) take the form 
T”z) = 0 and T”w = 0. Let w = 0 initially. Since the equalities (4.1) are satisfied, the leading 
term of the discrepancy of series (2.3) is given by 

m.Y9 0 = io, - h[k + 2p]-‘<V . u(y)) (4.11) 

under the boundary conditions on &. 
It follows that to compensate the discrepancy, one must solve problem (4.8)-(4.10) with 

right-hand sides 

F = 0, Gf=O, Go& k3) = IIG3)Uh + 210-~52V . NS3)e2 (4.12) 

where e’ is the unit vector of the ej axis. The solution V of this problem has the following 
asymptotic form at infinity [16] 

Here 6, > 0 and c,(v) depends only on Poisson’s ratio v = 3cI2(h+p)]-’ (its graph is given in 
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[16, p. 201). Since, for v>O, the solution does not vanish at infinity, the basic requirement for 
the boundary layer is violated. The situation can be corrected by altering the form of (4.11) 

mY, 0 = w9. -m + 2mv7 . dw> (4.14) 

Here U* = V, and U’ =(u:, u\) is a vector-valued function to be determined. The form of the 
discrepancy is also altered: the term --u#,)e’ -u!(&) e3 is added to the last expression in 
(4.12). The sum V’ of this term and the previous solution V is a solution of the problem (4.8)- 
(4.10) with a new right-hand side. By (4.13) 

V’(5)= (H(53)c1(v)V.U0(53)-.at~3)Je’ +u%>e3 +de~p(-~~e~)), 61 + 0~ 

NOW, the exponential decay condition for the boundary layer furnishes the following 
boundary condition for the unknown vector U’ 

u:(y) = 0, v;(y) = H(y)c,(v)V+ u’(y) for cp = *a (4.15) 

In (4.15) we also state a condition, which can be obtained by considering the boundary layer 
near X+. The system of equations for U’ has the form 

TYy, V)dty) = 0, YEK (4.16) 

It occurs as the condition for problem (2.4) to be solvable with j = 4, which arises additionally 
in connection with the modification (4.14) of the term (4.11) of series (2.3) (we recall that a 
similar system for U* arises when problem (2.4) with j = 3 is solved). Thus, we have obtained a 
problem in K with a right-hand side of special form, the solution of which can be found as in 
[12, Sec. 3.51. If A, + 2m- 1 is not an eigenvalue of the operator pencil, then 

u’(y) = rh*+2mY$p) (4.17) 

The angular part Y’ can be found from the problem 

T(y,$, ho + 2m - l)Y’(cp) = 0, cp E (- a. a) 

Ti (*a) = 0, Tt, (*a) = h(&a)q (v)QDi(+a) 

But if A0 + 2m- 1 is an eigenvalue, then the factor Y’ in (4.17) becomes a polynomial of In r 
(cf. (3.2)). 

By analogy with the construction of the correction u’ in the asymptotic solution corres- 
ponding to the longitudinal deformation of a symmetric beak, one can compute the corrections 
w’ and w* in the “bending” solution, which we represent as follows: 

(0. w%)) + EWV@C% W’O)) + 

+ &2-2y(~vw’, w2 +‘hh[h + 2l.l]-‘~2V * Vwo(y)) (4.18) 

Here w* = w and 

W’(Y) = r*+‘r: (up), w2(y) = r*+2~r; tcp) (4.19) 

assuming that A, + 2m-1 and A, +4m- 2 are not eigenvalues of the above-mentioned 
operator pencil. 

By (4.1), the first two terms in (4.18) satisfy the Dirichlet boundary condition on r, if 

wQ)=O for cp=*a (4.20) 
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To compensate for the discrepancy of the third term we invoke the solution Vz of the 
boundary-layer type, i.e. the solution of problem (4.8)-(4.10) with right-hand sides 

F = 0, Gf=O, cO(Sz. 53) = &wi(Ss)H(S&++ - 

-w*&)e* -~H&)*~(X+2~)-‘V~Vw”(l&)~~e2 

Using the notation c(v) = c,(v) and b(v) (see [17, p. 6441, where a graph of v H c(v) is also 
given), we compute the asymptotic form 

V*(5)= W45dWSd52 +~2(~)H(S~)2V~~~0(5~)521e1 + 

+[-w*(~~)+(~(~)-~~(v)~~)V~V~~(~~)H(S~)*I~* +4ev(-oo51Nv k1 -_)+a 

On requiring that V2 should vanish exponentially as E,, -+ +oo, we arrive at the equalities 

r%lpw’(y) = -c*(v)H(y)a;wo(y) 
(4.21) 

W*(Y) = ww(Y~*a;W”~Y) 

Thus, w’ in (4.18) can be found as a solution of the problem involving the boundary cond- 
itions (4.20) and (4.21) as well as the equation 

Tyy, V)w’cy) = 0, y E K 

This equation represents the condition for problem (2.4) to be solvable with j= 4. The angular 
part Y: in the representation (4.19) for w’ can be found from the relations 

T”tcpJ,A, +l)r:(cp)=O, cp~ (--a,a> 

T:(*a) = 0. a,$ (*a) = -h(zka)c2(v)3~@(*a) 

Finally, we remark that the missing equation and boundary condition for w2 arise at the next 
step of the algorithm (the solvability of (2.4) for j=6 and the requirement that the corres- 
ponding term of the boundary layer should decrease exponentially). 

5. STRESS-FREE LATERAL SURFACES 

Suppose that the stresses o,, o+ and 6, are equal to zero on Z* near the beak tip. We 
shall construct the boundary layers arising near the lateral surfaces, and, from the requirement 
that the boundary layers should decay exponentially, we shall determine the boundary 
conditions for the system of equations (2.12) for the vector-valued functions (u, w). The terms 
of the series (2.3) leave discrepancies in the boundary conditions on X,. In accordance with 
(2.5) and (2.8), the leading terms of these discrepancies are computed to be 

Qq(U)- C ai(M(H+-H_)~c,i(u)-X32”i(U)- 
i=V,s 

-)/,(H-f + ~-2)~~j(VW)+)/2X:~,itvw)J (5.1) 

Here z, and z, are the components of the stress tensor (for a plane stress state) written in 
terms of the local coordinates v, s introduced near X. Note that 6, = v(eH(&))-’ and 5, = s. 
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We consider the surface C_ (to fix our ideas) and change to the fast variables (4.5) in the 
neighbourhood of that surface. By analogy with (4.7), Sz can be defined by 

where H = H, + H_ and, similarly as in (4.5), H,(r) = (r cosa, rsin a). Thus, if we set E = 0, then 
Icz becomes the half-layer (5 E R3, c3 > 0, 5” E II), where 

l-I =YxRi, r= [-H(S3)-‘K(k3), WS3)-1H+(t3)l (5.2) 

We note two facts: firstly, the interval Y in (5.2) is independent of 5, in view of (1.1). 
Secondly, the semi-strip becomes asymmetric, because the condition H, = x:H introduced in 
Sec. 4 has been dropped. The leading terms of the decompositions (4.6) of L and B remain the 
same as in Sec. 4. This means that, as before, we find that the leading term V of the boundary 
layer satisfies the homogeneous equations (4.8) and (4.9) in the “new” strip (5.2) as well as the 
boundary conditions 

B”*(VoWW.2.53> = G0(52,53)r k2 or 
(5.3) 

G”(~2,~3)=I--‘5,(~;53)+52H(53)~5,(Vw;53))e’ + 

+(-z,(~;53)+52H(53)r~~(Vw;5~))e~ 

The equalities 

I G;&r53)&2 =O. j=LU. 
T 

I -5&(52r53)=0 
r 

(5.4) 

which mean that the principal vector and the principal moment of the load both vanish, serve 
as the conditions for such a problem to be solvable in the class of functions vanishing at 
infinity. 

We will consider the first (j = 1) and last equalities in (5.4). We compute the integrals and 
remove the dummy parameter by setting E = 1. Since Hk(t3) = H,(y) for y E X, the resulting 
relations take the form 

-HIWMW Y) + Hd~h,.(Vw; y) = 0 (5.5) 

H2t_~N,vOx Y) - H3,b%,0’w; y) = 0, y E inO (5.6) 

(here the boundary conditions arising in the study of the boundary layer near X+ are also 
included). It follows from (5.6) and (5.5) that z,(u) = z,(VW) = 0 for cp = fa, i.e. Go E 0. Since 
the first pairs of rows in (4.8), (4.9) and (5.3) constitute the plane problem of the theory of 
elasticity for the vector (VI, V,) in a half-strip, the aforesaid means that VI = V, = 0. The 
relation in (5.3) corresponding to j = 3 furnishes one more boundary condition 

--H16%s(u Y) + HzW,,(Vw; Y) = 0, YEiMAO (5.7) 

Moreover, V, is non-zero: it is the solution of the following Neumann problem that vanishes at 
infinity 

vo. VOV,(!3 = 0, 5” E l-I 

P~V3GY352 = 0, 61 ’ 0. 52 = f W53)-‘H&3) 

P~v3w& = -‘~v,Ox 53) + 52W53hdvw; 53). 5, = o, t2 E r 

(5.8) 
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We remark that, by (5.7), the right-hand side of (5.8) is equal to 

A(kd(h - V~WSd-‘[H+(53) - H.&N) 
A(53) = WS3)M'w; 53). 

System (2.1) requires four boundary conditions, but only three have been found so far. The 
point is that the component Gi turns out to be zero and the formula with j= 2 in (5.4) does 
not provide the fourth condition. One must, therefore, resort to the next term eH(&)Vl(Q of 
the boundary layer. The vector V’ satisfies problem (4.8), (4.9), (5.3) with certain right-hand 
sides F, G*, and Go. Again, there are four conditions for the problem to be solvable in the 
class of decreasing vector-valued functions. However, only one of them is necessary 

j F&dS”-C kj ~%1r~3)~~l 'I G%2&3)&2=O (5.9) 
n f 0 

(the second component of the principal load vector is equal to zero). We emphasize that 
the remaining three conditions can be used (as in Sec. 4) to determine the boundary data for 
(I?, w’). 

Let us refine formula (4.6). The second term of the decomposition of L(V,) has the form 
E-‘H(&)“L@/Q with L’ being a block-antidiagonal operator with right upper (2 x 1)-block 
(h + p)QV’ and left lower (1 x 2)-block (h + Il>D,v” (see the expression for II3 below). Apply- 
ing the operator to V,e3 + eH(t,)V’, we find that 

F2<5) =-6+ ,@H&)D332V3(@ (5.10) 

The two-term decomposition of the boundary condition operator furnishes the relation 

The derivative with 

~)~=a/~~-H-‘H’(S,a,+5~a~), aj=al%j (j=W 

respect to c3 is denoted by a prime. Henceforth the argument 5, will be 
omitted. Apart from a multiplier, Gi is identical with the leading term of the discrepancy left 
by the solution u in the boundary condition for o,, on Z, (see (5.1)) 

G;(51,53)= ~~H'(~3)~2V3@-m3V3(~) 
(5.11) 

‘X =H C ai(-X(H+-H_,)r,i(u)+52Hr,i(u)+ 
i=v.s 

+M(H: +Hl)z,(Vw)-MS~H’z,(Vw)) (5.12) 

To evaluate the integrals in (5.9), we represent V, as the product AP(c’) (A is determined 
from (5.8)). By (5.10), we have 

j F2(5)&,o = -(I+ ~>j (A’H-AH’)a2P(So)-AH’15,a,a2P(5’)+ 
n n 

+s2a2a2W%fs0 = -(h+p)C ?I (A’H-AH’)P(e’)- 
f 0 

(6, = *H-‘H, in the contour integrals, i.e. integration is over the bases of ll). The second term 
in (5.9) can be determined using (5.11) 

5 ka G:<S+S, =s i -HH’I&P(~~)* 

+hM’HP(S”) - AH’(S,&P(SO) + 5M(5O )))64, = 
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=z *Lj (A'HP(5')-AH'~,a,P(g0))dS, = 
0 

= L(AH)‘C f 5 P(4’)&r when 52 = fH-‘H* 
f 0 

This means that the sum of the first two terms in (5.6) is 

-MA(&)H(M)‘I: *; %,.fH-‘f&M, (5.13) 
f 0 

and now one must find the value of the integral. This can be done using Green’s formula. 
Consider the function Y(E”) = 5,. Obviously, Y is a harmonic function satisfying the condition 
&Y = 1 on the bases of the half-strip and the condition &Y = 0 on its end. According to (5.8), 
P is also a harmonic function with &P = 0 for 5, >O and k2 = +H-‘H, and a,P =p-* (5, = 
XH-‘[H, = H-1) for 4, = 0 and !$ E Y. We use Green’s formula 

0 = d (~0. VOP - PVO . v0~b~3 -L ~a,pd5~ - : f j ~4, 
0 

which implies that 

c f j P(S,,fH-‘H,)dS, = -& f 0 

Expression (5.13) takes the form &(AH)‘. Eventually, by integrating (5X), we complete 
the transformation of (5.9). Finally, the above-mentioned decay condition (5.9) for the bound- 
ary layer V-’ means that 

~~a,[H,(y)3Zy,(Vw;y)l+ I5 H,(y)aif-~(H+(y)-H_(y))x 
irv,z 

xzVi(u;Y) k%(H+(Y)2 + H-(Y)2)7vi(vw;y)t + 

+H,(y)aPvi(u;y)-MH3(y)ai~vi(Vw;y)= 0. y E aK 10 (5.14) 

Thus, relationships (5.5)-(5.7) and (5.14) constitute the necessary system of boundary 
conditions for (2.12). They are, however, written in an inconvenient form (this becomes quite 
obvious if one recalls that in Sec. 2 it was necessary to reduce the system to self-adjoint form). 
We transform (5.5)-(5.7) and (5.14) to obtain natural boundary conditions for system (2.12). 
We remark that, by the condition for the energy E mentioned in Sec. 3 (it vanishes only for 
polynomials), this way of writing the problem proves that it is elliptic (cf. [12, Sec. 5.51). We 
leave (5.5)-(5.7) unchanged and supplement (5.14) with Eqs (2.10) multiplied by X(H+ -H_) 
and the result of applying the operator Xa,(H+ -H_) to (5.7). Along with (5.4), we have 

av(--H2S,(U)+H3’5w(Vw))+2a,(-H27,(u)+H3~vs(Vw))= 0 (5.15) 

If N denotes the matrix-valued operator of the bo_undary conditions (5.5), (5.7), (5.15), and 
(5.6), then the vector-valued functions (ui, w’) E C,“(K \ 0)’ will satisfy Green’s formula 

We introduce the operator pencil A~llT(cp, a,,,, A), N,(cp, a,, A)11 corresponding to prob- 
lem (2.12), (5.5), (5.7), (5.15), in which the operator N, is defined as in (3.4). Namely, we 
rewrite the boundary conditions under consideration in polar coordinates 

T2~-1N~(~,ao,~a,)(~~,~~)+~4~-2N~2(~,a,,~a,)w=0, j= 1,2 
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r4m-2N:'(cp,a,,rar)(ur,u,)+ r6m-3N~(cp,a~,r~,>w = 0, 

r4n-1N~((P,~lp,r~r)(~,,U,)+r6m-2N~2((P,~~,ral)W = 0 

Then the matrix-valued operator N, consists of two blocks with components Ny(cp, a,, A+l) 
and N?((p, a,, A+ 2-24. The operator pencil introduced retains all the properties of T 
mentioned in Sec. 3. Moreover, the polynomials (3.2) are power solutions of the homogeneous 
problem (2.12), (5.5)-(5.7), (5X), and the asymptotic solutions U', . . . , U6 corresponding to 
them admit of the same physical interpretation as in Sec. 3. 
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